
R

LogiCORE™ IP
SPI-4.2 Core v8.5

Getting Started Guide
UG154 March 24, 2008

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com
UG154 March 24, 2008

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Virtex-4, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 2004-2008 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Revision History

The following table shows the revision history for this document.

Date Version Revision

09/30/04 1.0 Initial Xilinx release.

11/11/04 1.1 Document updated to support SPI-4.2 core v7.1.

04/28/05 1.2 Document updated to support SPI-4.2 core v7.2 and Xilinx ISE v7.1i.

08/31/05 2.0 Updated ISE service pack information.

1/18/06 3.0 Updated ISE to v8.1i, release date

7/13/06 4.0 Added support for Virtex-5, ISE to v8.2i, advanced version number and release date.

9/21/06 4.1 Updted for IP2i minor release. Removed Simulating the Dynamic Alignment Sink
core section from the example design chapter.

2/15/07 4.2 Updated system requirements, ISE version, and applied new directory structure
template to Chapter 4.

8/08/07 4.3 Updated for IP1 Jade Minor release. ISE version to 9.2i.

3/24/08 4.4 Updated core to v8.5, updated supported tool versions, and release date.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com
UG154 March 24, 2008

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com
UG154 March 24, 2008

Schedule of Figures . 7

Schedule of Tables . 9

Preface: About This Guide
Contents . 11
Conventions . 11

Typographical . 12
Online Document . 12

Chapter 1: Introduction
System Requirements . 13
About the Core . 13
Recommended Design Experience . 13
Additional Core Resources . 14
Technical Support. 14
Feedback. 14

Core . 14
Document . 14

Chapter 2: Licensing the Core
Before you Begin . 15
License Options . 15

Simulation-Only Evaluation . 15
Full System Hardware Evaluation . 15
Full . 16

Obtaining Your License . 16
Installing Your License File . 17

Chapter 3: Quick Start Example Design
Overview . 19
Generating the Core . 19
Implementing the Example Design . 21
Running the Simulation . 21

Setting up for Simulation . 21
Functional Simulation . 21
Timing Simulation . 22

Chapter 4: Detailed Example Design
Directory and File Contents . 26

<project directory> . 26

Table of Contents

http://www.xilinx.com

www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

R

<project directory>/<component name> . 26
<component name>/doc . 26
<component name>/example design . 27
<component name>/implement . 28
implement/results . 29
<component name>/simulation . 29
simulation/functional . 30
simulation/timing . 31

Implementation and Simulation Scripts . 31
Simulation Script Details. 32

Example Design Configuration . 32
Loopback Module . 33
Basic Loopback Operation . 33

Demonstration Test Bench . 34
Clock Generator . 35
Startup Module. 36
Stimulus Module . 37
Procedures Module . 38
Data Monitor . 38
Status Monitor . 38
Customizing the Demonstration Test Bench . 39
Test Case Package . 39
Testcase Module . 41
Calendar Sequence Files (Sink and Source) . 43

Appendix A: VHDL Details
Procedures Module . 45

Appendix B: Verilog Details
Procedures Module . 49
Random Testcase Sample Code. 51

Appendix C: Data and Status Monitor Warnings

Appendix D: Timing Simulation Warning and Error Messages

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com
UG154 March 24, 2008

Chapter 3: Quick Start Example Design
Figure 3-1: Core Customization GUI Main Window. 20

Chapter 4: Detailed Example Design
Figure 4-1: Example Design Configuration . 33
Figure 4-2: Demonstration Test Bench Connections . 34
Figure 4-3: Test Bench Modules . 35
Figure 4-4: Startup State Diagram . 36

Schedule of Figures

http://www.xilinx.com

www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com
UG154 March 24, 2008

Chapter 4: Detailed Example Design
Table 4-1: Project Directory. 26
Table 4-2: Component Name Directory . 26
Table 4-3: Doc Directory . 26
Table 4-4: Example Design Directory . 27
Table 4-5: Implement Directory . 28
Table 4-6: Results Directory . 29
Table 4-7: Simulation Directory . 29
Table 4-8: Functional Directory . 30
Table 4-9: Timing Directory . 31
Table 4-10: Testcase Package User-Defined Constants . 39
Table 4-11: Useful Testcase Signals. 42
Table 4-12: Testcase Module Request Signals . 42

Appendix A: VHDL Details
Table A-1: send_packet (PBr, addr, bytes) Inputs. 45
Table A-2: send_user_data (PBr, SOP, EOP, Err, Addr, bytes) Inputs 46
Table A-3: send_idles (PBr, cycles) Inputs . 46
Table A-4: send_training (PBr, patterns) Inputs . 46
Table A-5: sop_spacing (PBr, Bytes1, Err1, Addr1, EOP2, Err2, Addr2,

Bytes2, num_cycles) Inputs . 46
Table A-6: send_status (PBt, channel, value) Inputs . 47
Table A-7: get_status (PBt, channel) Inputs . 47

Appendix B: Verilog Details
Table B-1: send_packet (Addr, bytes) Inputs. 49
Table B-2: send_user_data (SOP, EOP, Err, Addr, bytes) Inputs . 50
Table B-3: send_idles (cycles) Inputs . 50
Table B-4: send_training (patterns) Inputs . 50
Table B-5: sop_spacing (Bytes1, Err1, Addr1, EOP2, Err2, Addr2,

Bytes2, num_cycles) Inputs . 50
Table B-6: send_status (channel, value) Inputs. 51
Table B-7: get_status (channel) Inputs . 51

Schedule of Tables

http://www.xilinx.com

www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 11
UG154 March 24, 2008

R

Preface

About This Guide

This guide provides information about generating the Xilinx LogiCORE™ IP SPI-4.2 core,
customizing and simulating the core using the provided example design, and running the
design files through implementation using the Xilinx tools.

Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of the Getting
Started Guide, and the conventions used in this document.

• Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Licensing the Core” provides information about installing and licensing
the core.

• Chapter 3, “Quick Start Example Design” provides instructions to quickly generate
the core and run the example design through implementation and simulation using
the default settings.

• Chapter 4, “Detailed Example Design” describes the files and directories created by
the CORE Generator. It also contains detailed information about the demonstration
test bench and directions for customizing it for use in a user application.

• Appendix A, “VHDL Details” provides details about the VHDL demonstration test
bench and how to customize it.

• Appendix B, “Verilog Details” provides details about the Verilog demonstration test
bench and how to customize it.

• Appendix C, “Data and Status Monitor Warnings” describes the common
demonstration test bench warnings.

Conventions
This document uses the following conventions. An example illustrates each convention.

http://www.xilinx.com

12 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Preface: About This Guide
R

Typographical
The following typographical conventions are used in this document:

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Italic font

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL) Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 13
UG154 March 24, 2008

R

Chapter 1

Introduction

The LogiCORE IP SPI-4.2 (PL4) core is a fully verified design solution that supports Verilog
and VHDL. The example design in this guide is provided in both Verilog and VHDL.

This chapter introduces the SPI-4.2 core and provides related information, including
recommended design experience, additional resources, technical support, and how to
submit feedback to Xilinx.

System Requirements

Windows

• Windows XP® Professional 32-bit/64-bit
• Windows Vista® Business 32-bit/64-bit

Linux

• Red Hat® Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat® Enterprise Desktop v5.0 32-bit/64-bit
(with Workstation Option)

• SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software

• ISE™ 10.1 with applicable service pack

Check the release notes for the required service pack; ISE Service Packs can be downloaded
from www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp.

About the Core
The SPI-4.2 core is a Xilinx CORE Generator™ IP core, included in the latest IP update on
the Xilinx IP Center. For detailed information about the core, see the SPI-4.2 product page.
For information about system requirements, installation, and licensing options, see
Chapter 2, “Licensing the Core.”

Recommended Design Experience
Although the SPI-4.2 core is a fully verified solution, the challenge associated with
implementing a complete design varies, depending on desired configuration and
functionality. For best results, previous experience building high-performance, pipelined
FPGA designs using Xilinx implementation software and user constraints files (UCF) is
recommended.

www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm
http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp

14 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 1: Introduction
R

Contact your local Xilinx representative for a closer review and estimate of the effort
required to meet your specific design requirements.

Additional Core Resources
For detailed information and updates about the SPI-4.2 core, see the following additional
documents located on the SPI-4.2 product page.

• LogiCORE SPI-4.2 Data Sheet

• LogiCORE SPI-4.2 Release Notes

• LogiCORE SPI-4.2 User Guide

For updates to this document, see the LogiCORE SPI-4.2 Getting Started Guide, also located
on the Xilinx SPI-4.2 product page.

Technical Support
To obtain technical support specific to the SPI-4.2 core, visit http://support.xilinx.com/.
Questions are routed to a team of engineers with expertise using the SPI-4.2 core.

Xilinx will provide technical support for use of this product as described in the SPI-4.2 User
Guide and the SPI-4.2 Getting Started Guide. Xilinx cannot guarantee timing, functionality,
or support of this product for designs outside the guidelines presented in this document.

Feedback
Xilinx welcomes comments and suggestions about the SPI-4.2 core and the documentation
provided with the core.

Core
For comments or suggestions about the SPI-4.2 core, please submit a WebCase from
http://support.xilinx.com/. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
http://support.xilinx.com/. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://support.xilinx.com/
http://support.xilinx.com/
http://support.xilinx.com/
www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm
http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 15
UG154 March 24, 2008

R

Chapter 2

Licensing the Core

This chapter provides instructions for obtaining a license for the core so that you can use
the core in a design. The SPI-4.2 core is provided under the terms of the Xilinx LogiCORE
Site License Agreement. This license agreement conforms to the terms of the SignOnce IP
License standard defined by the Common License Consortium. Purchase of the core
entitles you to technical support and access to updates for a period of one year.

Before you Begin
This chapter assumes that you have installed the core using either the CORE GeneratorTM

IP Update installer or by performing a manual installation after downloading the core
from the web. For information about installing the core, see the SPI-4.2 product page.

Before installing the core, you must have a Xilinx.com account and the ISE 10.1 software
installed on your system.

To set up an account and install the ISE software:

1. Click Sign in to Access Account at the top of the Xilinx home page; then follow the
instructions to create a support account.

2. Install the ISE 10.1 software with the applicable service pack.

License Options
The SPI-4.2 core provides three licensing options, described below.

Simulation-Only Evaluation
The Simulation-Only Evaluation license is provided with the Xilinx CORE Generator
system. This license lets you evaluate core functionality using a provided example design.
You can also use your own design and simulate the various interfaces on the core.
Functional simulation is supported by a dynamically generated gate-level netlist.

Full System Hardware Evaluation
The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place and route the design, evaluate timing, and
perform back-annotated gate-level simulation using the demonstration test bench
provided.

In addition, the license lets you generate a bitstream from the placed and routed design,
which can then be downloaded to a supported device and tested in hardware. The core can

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com
http://www.xilinx.com/ipcenter/signonce.htm
www.xilinx.com
www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm

16 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 2: Licensing the Core
R

be tested in the target device for a limited time before timing out. The core can be
reactivated by reconfiguring the device after a time out.

You can obtain the Full System Evaluation License in one of the following ways,
depending on the core:

• By registering on the Xilinx IP Evaluation page and filling out a form to request an
automatically-generated evaluation license

• By contacting your local Xilinx FAE to request a Full System Hardware Evaluation
license key

Click Evaluate on the SPI-4.2 core product page for information about obtaining a Full
System Hardware Evaluation License.

Full
The Full license is provided when you purchase the core. This option provides full access
to all core functionality both in simulation and in hardware, including:

• Gate-level functional simulation support

• Back annotated gate-level simulation support

• Full implementation support including place and route and bitstream generation

• Full functionality in the programmed device with no time-outs

Obtaining Your License

Obtaining a Simulation-Only or Full System Hardware Evaluation License

To obtain a Simulation-Only or Full System Hardware Evaluation license, do the
following:

• Navigate to the SPI-4.2 product page.
• Click Evaluate.
• Select one of the following:

− Simulation-Only Evaluation

− Full System Hardware Evaluation

For both types of licenses, follow the onscreen instructions to both download the CORE
Generator files (delivered as an IP update) and satisfy any additional requirements
associated with the license type.

Obtaining a Full License

To obtain a Full license, you must purchase the core. After purchase, you will receive a
letter containing a serial number. This serial number is used to register for access to the
lounge, a secured area of the SPI-4.2 product page.

• From the product page, click Register to request access to the lounge.
• Xilinx will review your access request. Requests for access are typically granted

within 48 hours. Contact Xilinx Customer Service if you need faster turnaround.
• After you receive confirmation of lounge access, click Access Lounge on the SPI-4.2

product page and log in.

www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm
http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 17
UG154 March 24, 2008

Installing Your License File
R

Follow the instructions in the lounge to fill out the license request form; then click Submit
to automatically generate the license. An email containing the license and installation
instructions will be sent to you immediately.

Installing Your License File
After selecting a license option, an email is sent to your login account that includes
instructions for installing your license file. In addition, information about advanced
licensing options and technical support is provided.

http://www.xilinx.com

18 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 2: Licensing the Core
R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 19
UG154 March 24, 2008

R

Chapter 3

Quick Start Example Design

The quick start steps provide information to quickly generate a SPI-4.2 core, run the design
through implementation with the Xilinx tools, and simulate the example design using the
provided demonstration test bench. For more detailed information about this example
design, see Chapter 4, “Detailed Example Design.”

Overview
The SPI-4.2 example design consists of the following:

• SPI-4.2 Sink and Source core netlists

• SPI-4.2 Sink and Source core simulation models

• Example HDL wrapper (which instantiates the cores and example design)

• Customizable demonstration test bench to simulate the example design

Generating the Core
To generate a SPI-4.2 core with default values using the Xilinx CORE Generator system, do
the following:

1. Start the CORE Generator system.

For help starting and using the CORE Generator system, see the Xilinx CORE Generator
Guide, available from the ISE documentation.

2. Choose File > New Project.

3. Type a directory name. For this example design, use the directory name design.

4. Set the following project options:

♦ Part Options

- From Target Architecture, select either VirtexTM-4 or Virtex-5.

Note: If an unsupported silicon family is selected, the SPI-4.2 core will not appear
in the taxonomy tree.

Note: The Device, Package and Speed Grade selected in the Part Options tab have
no effect on the generated core. The core is delivered with an example UCF
targeting either Virtex-4 4vlx25ff668 or Virtex-5 5v1x50-ff676.

♦ Generation Options

- For Design Entry, select either VHDL or Verilog.

- For Vendor, select Synplicity or Other (for XST).

http://www.xilinx.com

20 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 3: Quick Start Example Design
R

5. After creating the project, locate the directory containing the SPI-4.2 core in the
taxonomy tree; it appears under Communications & Networking >
Telecommunications > SPI-4.2.

6. Double-click the core to bring up the customization GUI.

7. In the Component Name field, enter a name for the core instance. (In this example, the
name quickstart is used.)

8. After selecting the desired features and parameters from the GUI screens, click
Generate.

The cores and supporting files, including the example design, are generated in the project
directory. For detailed information and an illustration of the example design files and
directories produced, see “Directory and File Contents” in Chapter 4.

Figure 3-1: Core Customization GUI Main Window

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 21
UG154 March 24, 2008

Implementing the Example Design
R

Implementing the Example Design
After generating a core with a Full System Hardware Evaluation or Full license, the netlists
and the example design can be processed by the Xilinx implementation tools. The
generated output files include scripts to assist you in running the Xilinx tools.

To implement the SPI-4.2 example design, open a command prompt or terminal window
and type the following commands:

For Windows

ms-dos> cd <proj>\<quickstart>\implement
ms-dos> implement.bat

For Linux

% cd <proj>/<quickstart>/implement
% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design. The script then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the results directory.

Running the Simulation
Using the provided example design, you can quickly simulate and observe the behavior of
the SPI-4.2 core. There are two different simulation types, functional and timing. The
simulation models provided are either in VHDL or Verilog, depending on the CORE
Generator Design Entry project option selected by the user.

Setting up for Simulation
The Xilinx UniSim and SimPrim libraries must be mapped into the simulator. If the UniSim
or SimPrim libraries are not set for the test environment, go to www.xilinx.com/support,
where the following solution records are located:

• Compiling Xilinx Simulation Libraries (MTI) - Answer Record 2561

• Compiling Xilinx Simulation Libraries (NC-SIM) - Answer Record 2554

Functional Simulation
Instructions for running a functional simulation of the SPI-4.2 core using either VHDL or
Verilog are given below. Functional simulation models are provided when the core is
generated. Note that implementing the core before simulating the functional models is not
required. If a configuration file (referenced in the CORE Generator GUI as the COE file)
was used to program the calendar, special steps are required to include the calendar
sequence in the simulation. See the SPI-4.2 Core User Guide for details on including the
calendar initialization values in simulation.

To run a VHDL or Verilog functional simulation of the example design using MTI:

1. Set the current directory to:

<quickstart>/simulation/functional/

2. Launch the ModelSim® simulator.

3. Launch the simulation script:

modelsim> do simulate_mti.do

http://www.xilinx.com
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=2561
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=2554

22 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 3: Quick Start Example Design
R

To run a VHDL or Verilog functional simulation of the example design using NCSIM:

1. Set the current directory to:

<quickstart>/simulation/functional/

2. Execute the simulation script:

% simulate_ncsim.sh
ms-dos> simulate_ncsim.bat

To run a Verilog functional simulation of the example design using VCS:

1. Set the current directory to:

<quickstart>/simulation/functional/

2. Execute the simulation script:

% simulate vcs.sh

The simulation script compiles the functional simulation models, the loopback and the
demonstration test bench, adds relevant signals to the wave window, and runs the
simulation. To observe the operation of the core, inspect the simulation transcript and the
waveform.

Timing Simulation
Timing simulation is available only with purchase of the core (Full license) or with access
to the Full System Hardware Evaluation license. With a Simulation Only Evaluation
license the core cannot be run through the implementation tools, which is required for
timing based simulation.

Instructions for running a timing simulation of the SPI-4.2 core using either VHDL or
Verilog are given below. A timing simulation model is generated when the core is run
through the Xilinx tools using the implement script. Calendar information specified in a
COE file is included in the timing simulation netlist.

To run a VHDL or Verilog l simulation of the example design using MTI:

1. Set the current directory to:

<quickstart>/simulation/timing/

2. Launch the ModelSim simulator.

3. Launch the simulation script:

modelsim> do simulate_mti.do

To run a VHDL or Verilog simulation of the example design using NCSIM:

1. Set the current directory to:

<quickstart>/simulation/timing/

2. Execute the simulation script:

ms-dos> simulate_ncsim.bat
% simulate_ncsim.sh

To run a Verilog simulation of the example design using VCS:

1. Set the current directory to:

<quickstart>/simulation/timing/

2. Execute the simulation script:

% simulate_vcs.sh

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 23
UG154 March 24, 2008

Running the Simulation
R

The simulation script compiles the timing simulation model and the demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

http://www.xilinx.com

24 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 3: Quick Start Example Design
R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 25
UG154 March 24, 2008

R

Chapter 4

Detailed Example Design

This chapter provides detailed information about the example design, including a
description of files and the directory structure generated by the Xilinx CORE Generator,
the purpose and contents of the provided scripts, the contents of the example HDL
wrappers, and the operation of the demonstration test bench.
top directory link - white text invisible

<project directory>topdirectory

Top-level project directory; name is user-defined

 <project directory>/<component name>
Core release notes file

 <component name>/doc
Product documentation

 <component name>/example design
Verilog and VHDL design files

<component name>/implement
Implementation script files

 implement/results
Results directory created after implementation scripts are run;
contains implement script results.

 <component name>/simulation
Simulation scripts

 simulation/functional
Functional simulation files

 simulation/timing
Timing simulation files

http://www.xilinx.com

26 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

Directory and File Contents
The SPI-4.2 core directories and their associated files are defined in the following sections.

<project directory>
The project directory contains all the CORE Generator project files. See the SPI-4.2 User
Guide for detailed information about each file.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which may include last-minute changes and updates.

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

Table 4-1: Project Directory

Name Description

<project_dir>

<component_name>_pl4_snk_top.ngc
<component_name>_pl4_src_top.ngc

Top-level netlists.

<component_name>_pl4_snk_top.v[hd]
<component_name>_pl4_src_top.v[hd]

Verilog and VHDL simulation
models.

<component_name>.xco CORE Generator project-specific
option file; can be used as an input
to the CORE Generator.

<component_name>_flist.txt List of files delivered with the core.

<component_name>_pl4_snk_top.{vho|veo}
<component_name>_pl4_src_top.{vho|veo}

VHDL and Verilog instantiation
templates.

Back to Top

Table 4-2: Component Name Directory

Name Description

<project_dir>/<component_name>

spi4_2_readme.txt Core release notes text file.

Back to Top

Table 4-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

spi4_2_ds209.pdf SPI-4.2 Data Sheet

spi4_2_gsg154.pdf SPI-4.2 Getting Started Guide

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 27
UG154 March 24, 2008

Directory and File Contents
R

<component name>/example design
The example design directory contains the example design files provided with the core.

spi4_2_ug153.pdf SPI-4.2 User Guide

Back to Top

Table 4-3: Doc Directory (Continued)

Name Description

Table 4-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

<component_name>_top.ucf User constraints file (UCF) provides
example constraints necessary for
processing the core using Xilinx
implementation tools. This file can be
modified to meet individual system
requirements. The example UCF contains
timing and placement constraints for both
Sink and Source cores.

<component_name>_top.v[hd] VHDL or Verilog wrapper file for the
example design; it instantiates the Sink and
Source cores and the loopback module.
This is the top-level synthesis file for the
example design.

pl4_fifo_loopback.v[hd] Top-level loopback file used in the example
design; it instantiates the loopback read
and write modules.

pl4_fifo_loopback_read.v[hd] Loopback read module used in the
example design; it interfaces to the SPI-4.2
Sink core.

pl4_fifo_loopback_write.v[hd] Loopback write module used in the
example design; it interfaces to the SPI-4.2
Source core.

pl4_src_clk.v[hd] Example clocking module used in the
example design when the Source core is
configured for slave clocking.

virtex4.v Module instantiation for Virtex-4
primitives

virtex5.v Module instantiation for Virtex-5
primitives

Back to Top

http://www.xilinx.com

28 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

<component name>/implement
The implement directory contains the core implementation script files.

Table 4-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.{sh|bat} Windows (.bat) or Linux (.sh) script that
processes the example design through the
Xilinx tool flow.

xst.prj XST project file for the example design; it
lists all of the source files to be
synthesized. It is only available when the
CORE Generator vendor project option is
set to “Other.”

xst.scr XST script file for the example design that
is used to synthesize the core, and it is
called from implement.{sh|bat}. It is only
available when the CORE Generator
vendor project option is set to “Other.”

synplify.prj Synplicity project file for the example
design; it lists all of the source files to be
synthesized. It is only available when the
CORE Generator vendor project option is
set to “Synplicity.”

Back to Top

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 29
UG154 March 24, 2008

Directory and File Contents
R

implement/results
The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

<component name>/simulation
The simulation directory contains the necessary files to test a VHDL or Verilog example
design with the demonstration test bench.

Table 4-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files.

Back to Top

Table 4-7: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

data_file.dat Data file containing the data to be sent
across the SPI-4.2 Interface

pl4_clk_gen.v[hd] Demo Test bench Clock Generator

pl4_data_monitor.v[hd] Demo Test bench Data Monitor

pl4_demo_testbench.v[hd] Demo Test bench Top Level Module

pl4_procedures.v[hd] Demo Test bench Procedures Module

pl4_src_clk.v[hd] HDL file which is utilized if the Slave core
is configured with slave clocking

pl4_startup.v[hd] Demo Test bench DCM Startup and
Calendar Loader Module

pl4_status_monitor.v[hd] Demo Test bench Status Monitor

pl4_stimulus.v[hd] Demo Test bench Data and Status Stimulus
Module

pl4_testcase.v[hd]
pl4_testcase_pkg.v[hd]

Controls the operation of the demonstration
test bench and can be user-modified.

snk_calendar.dat Data file containing the calendar
information for the Sink interface

src_calendar.dat Data file containing the calendar
information for the Source interface

[glbl.v] Asserts initial global reset pulse
(Verilog only)

Back to Top

http://www.xilinx.com

30 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 4-8: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do ModelSim macro file that compiles the
functional netlist, loopback HDL, and
demo HDL source. The script also loads
and runs the simulation for 8 μs.

wave_mti.do ModelSim macro file that opens a wave
window and adds key signals to the wave
viewer. The wave_mti.do file is called by
the simulate_mti.do macro file.

simulate_ncsim.sh
simulate_ncsim.bat

Shell scripts that compile the functional
netlist and loopback HDL source. The
script also launches NCSIM and runs the
simulation for 8 μs.

wave_ncsim.sv NCSIM macro file that opens a wave
window and adds key signals to the wave
viewer. The wave_ncsim.sv file is called by
the simulate_ncsim.sh or
simulate_ncsim.bat file.

simulate_vcs.sh (verilog only) Shell script that compiles the functional
netlist and example design. The script also
runs the functional simulation using VCS.

vcs_session.tcl (verilog only) VCS tcl script that opens a wave window.
This macro is called by the simulate_vcs.sh
script.

vcs_commands.key (verilog only) VCS command file. This file is called by the
simulate_vcs.sh script.

Back to Top

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 31
UG154 March 24, 2008

Implementation and Simulation Scripts
R

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

Implementation and Simulation Scripts
The implementation script is either a shell script or a batch file that runs the example
design through the Xilinx tool flow. The scripts are located in the following directory:

<proj_dir>/<component_name>/implement/

The implementation scripts are parameterized based on the Design Entry Tool and Design
Entry Language CORE Generator project options. If either of these project options are
changed, the core must be regenerated to create the appropriate implementation scripts.

Table 4-9: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do ModelSim macro file that compiles the
post-par timing netlist and demo HDL
source. The script also loads and runs the
simulation for 8 μs. The implement script
must first be run to generate the post-par
timing simulation model. Simulation can
only be run after the timing simulation
model is generated.

wave_mti.do ModelSim macro file that opens a wave
window and adds key signals to the wave
viewer. The wave_mti.do file is called by
the simulate_mti.do macro file.

simulate_ncsim.sh
simulate_ncsim.bat

Shell scripts that compile the functional
netlist and loopback HDL source. The
script also launches NCSIM and runs the
simulation for 8 μs.

wave_ncsim.sv A NCSIM macro file that opens a wave
window and adds key signals to the wave
viewer. The wave_ncsim.sv file is called by
the simulate_ncsim.sh or
simulate_ncsim.bat file.

simulate_vcs.sh (verilog only) Shell script that compiles the structural
netlist and example design. The script also
runs the functional simulation using VCS.

vcs_session.tcl (verilog only) VCS tcl script that opens a wave window.
This macro is called by the simulate_vcs.sh
script.

vcs_commands.key (verilog only) VCS command file. This file is called by the
simulate_vcs.sh script.

Back to Top

http://www.xilinx.com

32 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

If the core was generated with the Full System Hardware Evaluation or the Full license, the
implementation script is present and performs the following steps:

1. Synthesizes the example design using the selected synthesis tool (XST or Synplify).

2. Runs ngdbuild to consolidate the core netlists, wrapper netlist, and constraints file
into the common database.

3. Runs map to perform technology specific mapping of the design.

4. Runs par to perform place and route of the design.

5. Runs trce to perform static timing analysis of the routed design.

6. Runs bitgen to generate a bitstream for download to the target FPGA.

7. Runs netgen to generate a post-par simulation model for use in timing simulation.

Simulation Script Details
The simulation scripts for ModelSim and NCSIM that simulate the demonstration test
bench are located in one of the following directories:

<proj_dir>/<component_name>/simulation/{functional | timing }/

For functional simulation, the simulation script performs the following tasks:

1. Compiles the simulation models provided with the core.

2. Compiles the loopback example design.

3. Compiles the wrapper file, which instantiates the cores and the loopback.

4. Compiles the demonstration test bench.

5. Starts a simulation of the demonstration test bench.

6. Opens the waveform viewer and adds key signals
(wave_mti.do|wave_ncsim.sv).

7. Runs the simulation.

For timing simulation, the simulation script performs the following tasks:

1. Compiles the post-par design example, which includes the cores and the loopback.

2. Compiles the demonstration test bench.

3. Starts a simulation of the demonstration test bench.

4. Opens the waveform viewer and adds key signals
(wave_mti.do|wave_ncsim.sv).

5. Runs the simulation.

Example Design Configuration
In the example design, a Loopback Module is connected to the user interface of the SPI-4.2
core. Typically, the user interface would be connected directly to the design. The SPI-4.2
Interface, which is the interface defined by the OIF-SPI4-02.1 specification, typically

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 33
UG154 March 24, 2008

Example Design Configuration
R

connects to a SPI-4.2 PHY layer device or network processor. Figure 4-1 shows the example
design modules architecture and interfaces to the SPI-4.2 core.

Loopback Module
The Loopback Module connects to the user interface of the SPI-4.2 Sink and Source cores.
There is a Read Module that accesses packet data from the Sink FIFO and a Write Module
that transfers data into the Source FIFO. The Read Module polls the status signals
SnkFFEmpty_n and SnkFFAlmostEmpty_n to determine whether it can perform a read
from the Sink FIFO. The Write Module polls SrcFFAlmostFull_n to determine whether
it can transfer data into the Source FIFO.

Basic Loopback Operation
When the Almost Full flag (SrcFFAlmostFull_n) is deasserted, the Write Module
asserts a read request (RReq) that is sent to the Read Module. When a read request is
received, the Read Module verifies that the FIFO is not empty and initiates a read from the
Sink FIFO. On the next cycle, the data appears on SnkFFData, and SnkFFValid is
asserted. SnkFFValid drives the SrcFFWrEn_n signal directly, which enables the writing
of data into the Source FIFO. The transfer of data continues until the Source FIFO becomes
almost full or the Sink FIFO becomes empty. If the Source FIFO becomes almost full, all
outstanding data is written into the Source FIFO and the transfer of data between the
FIFOs is halted.

Figure 4-1: Example Design Configuration

SPI-4.2 CoreLoopBack Module

Sink

Interface

PL4

Source

Interface

Write Module

Read Module

SnkFFData

SnkFFAddr

SnkFFMod

SnkFFSOP

SnkFFEOP

SnkFFErr

SrcFFData

SrcFFAddr

SrcFFMod

SrcFFSOP

SrcFFEOP

SrcFFErr

SrcFFWrEn_n

SrcFFAlmostFull_n

SnkFFValid

Write

State

Machine

SnkFFAlmostEmpty_n

SnkFFEmpty_n

SnkFFRdEn_n

Read

State

Machine

Register

Bank

RAck

RReq

http://www.xilinx.com

34 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

Demonstration Test Bench
The demonstration test bench emulates a PHY device by generating and receiving packet
data across the SPI-4.2 interface. The interface between the demonstration test bench and
the SPI-4.2 core is illustrated in Figure 4-2.

The modules for sending data and status are described in “Customizing the
Demonstration Test Bench,” later in this section. As described below and shown in
Figure 4-3, the demonstration test bench consists of the following modules:

• Clock Generator

• Startup

• Stimulus

• Data Monitor

Figure 4-2: Demonstration Test Bench Connections

Demonstration
Testbench

Stimulus
Module

Data
Monitor

Status
Monitor

SPI-4.2 Core

Sink Core

User
Sink

Interface

SPI-4.2
Sink

Interface

Source Core

User
Source

Interface

SPI-4.2
Source

Interface

TCtl_N

TCtl_P

TDat_N

TDat_P

TSClk

TStat

TDClk_N

TDClk_P

RCtl_N

RCtl_P

RDat_N

RDat_P

RSClk

RStat

RDClk_N

RDClk_P

IdleRequest

TrainingRequest

SnkDip2ErrRequest

Source Static Config Signals

Sink Static Config Signals

SrcInFrame

SnkInFrame

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 35
UG154 March 24, 2008

Demonstration Test Bench
R

• Status Monitor

• Testcase

Clock Generator
The Clock Generator creates all of the clocks that are used in the Design Example,
including SysClk, RDClk2x, UserClk, TSClk, and SnkIdelayRefClk. These clocks are
described in more detail in Table 4-10.

Figure 4-3: Test Bench Modules

Demonstration Testbench

Testcase
Module

Stimulus
Module

Static Config. Signals

TCDat

TCCtl

TCStat

TCChan

TCIdleRequest

TCTrainingRequest

TCSinkDip2ErrRequest

TCDIP2Request

CtlFull

FFWriteEn

SopErr

GetStatusChan

GetStatus

FullVec

Status
Monitor

SnkInFrame

Data
Monitor SrcInFrame

Procedures

Testcase
Package

Clock
Generator

http://www.xilinx.com

36 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

Startup Module
The Startup Module contains three functions: DCM setup, calendar loading, and Dynamic
Phase Alignment (DPA) Initialization. These functions are described in detail in the
following sections.

DCM Startup

The DCM Startup is a state machine that ensures that the DCMs are reset in the appropriate
order. If they are not reset appropriately, the DCMs will not lock. The Startup Module first
asserts DCMReset_TDClk. Once Locked_TDClk is asserted, it resets DCMReset_RDClk.
Then it waits for Locked_RDClk before asserting DCMReset_TSClk. After
Locked_TSClk is asserted, the state machine waits until the SnkClksRdy and
SrcClksRdy signals are asserted. The Reset_n signal is deasserted only after this occurs.
All operations are performed in the SysClk domain.

Figure 4-4 illustrates the nine states for this machine.

• IDLE Initial state after reset; DCMReset_TDClk is asserted.

• TDCLK_RST Holds DCMReset_TDClk for 8 cycles then releases it.

• TDCLK_LCK Waits for the Locked_TDClk signal.

Figure 4-4: Startup State Diagram

IDLE
DCMReset_TDClk = 0

DCMReset_RDClk = 0
Reset_n = 0

TDCLK_RST
DCMReset_TDClk = 1

DCMReset_RDClk = 0

Reset_n = 0

RDCLK_RST
DCMReset_TDClk = 0

DCMReset_RDClk = 1

Reset_n = 0

TDCLK_LCK
DCMReset_TDClk = 0

DCMReset_RDClk = 0
Reset_n = 0

RDCLK_LCK
DCMReset_TDClk = 0
DCMReset_RDClk = 0

Reset_n = 0

Reset_n

Count < 8

Count = 8

 Locked_TDClk = 1

 Count = 8

Locked_RDClk = 1

1

SnkClksRdy = 1 &
SrcClksRdy = 0

Count = 512

 Count = 512

Count < 8

1

Count < 512 &
Locked_TDClk = 0

Count < 512 &
Locked_RDClk = 0

CLKS_RDY
SnkClksRdy = 1
SrcClksRdy = 1

SnkClksRdy = 0 or
SrcClksRdy = 0

RELEASE_RST
DCMReset_TDClk = 0
DCMReset_RDClk = 0

SnkClksRdy = 1

SrcClksRdy = 1
Reset_n = 0

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 37
UG154 March 24, 2008

Demonstration Test Bench
R

• RDCLK_RST Holds DCMReset_RDClk for 8 cycles then releases it

• RDCLK_LCK Waits for the Locked_RDClk signal.

• TSCLK_RST Holds DCMReset_TSClk for 12 cycles then releases it.

• TSCLK_LCK Waits for the Locked_TSClk signal.

• CLKS_RDY Waits for SnkClksRdy and SrcClksRdy signals.

• RELEASE_RST Releases Reset_n.

Calendar Loader

The second function of the Startup module is the logic to load the calendars. The
demonstration test bench reads the Sink calendar sequence and the Source calendar
sequence from two different files and loads this information into the calendars of the Sink
and Source cores and into the Stimulus module. It also loads the calendar into the Status
Monitor so that it can identify which channel is receiving status. The calendar sequences
can be modified (see “Calendar Sequence Files (Sink and Source),” page 43).

DPA Initialization

The third function of the Startup module is to initialize the Dynamic Phase Alignment
section of the Sink core. It is present in the module only if Dynamic Alignment is selected
in the CORE Generator system. It simply asserts the PhaseAlignRequest signal to the Sink
core for two cycles of UserClk once the core is out of reset.

Once PhaseAlignRequest is asserted, the dynamic alignment algorithm needs some
time before completing its alignment and asserting PhaseAlignComplete. This value is
dependent on the frequency of RDClk and when PhaseAlignRequest is asserted.

Stimulus Module
While the testcase and procedures modules are used to generate data and status, the
stimulus module is used to actually send this data to the SPI-4.2 core. The stimulus module
either transmits data and status generated by the testcase module, or it directly transmits
training or idle data and framing status. In addition to sending status and data, the
stimulus module drives the static configuration signals defined in the testcase module. The
behavior of the stimulus module can be modified with the constants defined in the testcase
package.

The Stimulus module also performs the following operations:

• Sends training or framing if the core is out of frame

• Inserts periodic training on RDat

• Ensures minimum SOP spacing is met

• Calculates DIP2 and DIP4 values

• Drives Source core request signals

• Merges SOP and EOP control words

The Stimulus module has two status inputs: SnkInFrame and SrcInFrame. If
SnkInFrame is deasserted, the stimulus module sends training patterns over RDat until
SnkInFrame is asserted. If SrcInFrame is deasserted, the stimulus module sends
framing over TStat until SrcInFrame is asserted.

http://www.xilinx.com

38 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

Procedures Module
The procedures module is a package of functions instantiated in the testcase module to
simplify sending data and status to the stimulus module. Using these functions, you can
create any desired sequence of data or status. The method by which functions are called
varies among languages, and is described in the appendices.

The following functions are supported in the procedures module:

• send_packet Used to transmit an entire packet of data. This procedure will always
send an SOP control word before the burst of data and an EOP control word following
the data burst.

• send_user_data Used to transmit a burst of data. The presence of an SOP control
word (before the burst of data) and an EOP control word (following the data burst)
can be specified. The EOP can optionally specify an abort (ERR).

• send_idles Used to send idle cycles.

• send_training Used to send training patterns.

• sop_spacing Used to send erred data by sending two SOP words in less than eight
cycles. This function limits the number of cycles between the two SOPs to less than
seven. This ensures that an SOP spacing error occurs.

• reset Used to reset the interface to the stimulus module. Should be called at the
beginning of any testcase.

• send_status Used to change the status (on TStat) for a particular channel.

• get_status Used to check the status of a specific channel.

Data Monitor
The data monitor is responsible for verifying that data sent from the demonstration test
bench is the same as the data received from the core. This is accomplished by monitoring
the RDat and RCtl signals that are input into the Sink core, and comparing them to the
TCtl and TDat signals output from the Source core. This is a simple comparison as long as
the data being sent does not violate the OIF-SPI4-02.1 specification. If the specification is
violated, the SPI-4.2 core modifies the data to enforce compliance, and the data monitor
accounts for the modification before comparing TDat to RDat. In addition to the data, the
monitor also verifies DIP4, SOP spacing, IDLE request, Training request, DATA_MAX_T,
and ALPHA_DATA compliance. Changes in the testcase can create situations that cause the
data monitor to output warning messages. For more information on output warning
messages, see Appendix C, “Data and Status Monitor Warnings.”

Status Monitor
The status monitor inspects the RStat bus. In addition to verifying correct values for
channel status, it compiles the current status for each channel into the vector FullVec.
FullVec is used by the testcase module when the CHECK_RSTAT constant is set to stall
data on RDat when the targeted channel is full. See Table 4-11 for more information about
the FullVec vector.

The status monitor also calculates the DIP2 value for RStat and compares it with what is
actually received. If there is an error, it looks at the signal SnkDIP2ErrRequest to see if it
was asserted and the error is expected.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 39
UG154 March 24, 2008

Demonstration Test Bench
R

Lastly, the signal SnkInFrame is created in the status monitor by inverting SnkOof. This
signal is used by the stimulus module to send training. See Appendix C, “Data and Status
Monitor Warnings.”

Customizing the Demonstration Test Bench
The demonstration test bench can be used with default settings or customized to observe
the behavior of the SPI-4.2 core for different configurations.

The demonstration test bench can be programmed to transmit a range of stimuli by
modifying TSCLK_LCK.

• Testcase Package—contains constants used by the testcase module

• Testcase Module—generates data and status

• Sink Calendar Sequence—contains the channel order for the Sink core status

• Source Calendar Sequence—contains the channel order for the Source core status

The following sections describe each module, including customization methods and
resulting behavior. The module descriptions are applicable to both VHDL and Verilog
designs. Language-specific details for VHDL are provided in Appendix A, “VHDL
Details.” Language-specific details and source code showing how to further randomize
input to the SPI-4.2 core for Verilog are provided in Appendix B, “Verilog Details.”

Test Case Package
The test case package contains a list of constants that define the ways that the cores and
demonstration test bench operate. Some of these are user-defined and can be modified,
while others are defined when the core is generated. Table 4-10 provides test bench
constants that can be modified. These constants are modified by regenerating the core in
the CORE Generator system.

Table 4-10: Testcase Package User-Defined Constants

Name
Constant

Type
Default Value

(Range)
Description

SNK_CAL_DATA String snk_calendar.dat

<filename>

Contains the name of the file with the Sink
calendar sequence to be programmed.

SRC_CAL_DATA String src_calendar.dat

<filename>

Contains the name of the file with the Source
calendar sequence to be programmed.

SNK_ALPHA_DATA Integer 3 <0 - 255> Sets the number of repetitions of the 20-word
training pattern sent to the Sink core (0 means
don’t send periodic training).

SNK_DATA_MAX_T Integer 4000 <0-65535> Sets the number of cycles between training
patterns sent to the Sink core (0 means don’t send
periodic training).

http://www.xilinx.com

40 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

MERGE_PAYLOAD Integer 0 <0 or 1> Before data is sent on RDat, the demonstration
test bench can either merge an EOP and SOP
control word into one payload control word, or it
can leave them as two separate control words.

1: Merge EOP and SOP is enabled.

0: Merge EOP and SOP is disabled.

CHECK_RSTAT Integer 0 <0 or 1> The demonstration test bench can operate in two
modes with respect to the incoming status signal
RStat. It either ignores the value on RStat or
checks the value on RStat.

0: Ignore the value on RStat. The test bench
continues to send data on RDat regardless of
the status of the current channel.

1: Check the value on RStat. The test bench
checks the status of the current channel before
sending data to it. If the channel is satisfied
(RStat = ‘10’), then the test bench does not send
the packet of data and instead tries to send the
next packet. The test bench sends the packet if
the channel is starving or hungry (RStat = ‘01’
or ‘00’).

DATA_TYPE Integer 1 <0, 1, 2> Three types of data can be generated on RDat. The
first type simply increments the data on each
channel (e.g. sends 0, 1, 2 to channel 0, sends 0, 1,
2 to channel 1, then sends 3, 4, 5 to channel 0). The
second sends randomized data on RDat. The last
type sends data read from the file
<TEST_DATA_FILE>.

0: Send incremental data

1: Send random data

2: Send data read from file

TEST_DATA_FILE String data_file.dat

<filename>

Contains the name of the file to be read if
DATA_TYPE = 2

RANDOM_SEED Integer
(Verilog)

5431 <any 32-bit
integer value>

Initial seed for the random number generator. To
get different results between two runs of a
random test bench, the seed must be changed. If
the seed is not changed between runs, then every
random number is the same as the previous run.

std_logic_
vector(31
downto 0)
(VHDL)

x”1537” <any 32-bit
vector>

Table 4-10: Testcase Package User-Defined Constants (Continued)

Name
Constant

Type
Default Value

(Range)
Description

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 41
UG154 March 24, 2008

Demonstration Test Bench
R

Testcase Module
The testcase module generates data and sends it to the stimulus module, which in turn
transmits data to the Sink core and status to the Source core. The following data is created
in the testcase module:

• Static configuration signals

• SPI-4.2 and demonstration test bench requests

• Source core status and Sink core data

Figure 4-2 shows the interface between the testcase and stimulus modules.

The static configuration signals are set when the SPI-4.2 core is generated; these signals can
also be modified in circuit. The description of these signals can be found in the SPI-4.2 Core
User Guide.

The status and data generation is simplified by instantiating the procedures module and
calling the functions contained in the module. This allows the testcase module to be
completely asynchronous, as all of the clocking is done in the procedures module.

DATA_NUM_TRAIN_SEQ Integer 3 <0 - 255> Sets the number of complete training patterns that
the demonstration test bench has to receive on
TDat (upon startup) before it stops sending
framing sequences on TStat. Once this happens,
the demonstration test bench begins sending
valid status.

TDCLK_PERIOD Time 2.86 ns

<time>

Sets the period of the SysClk signal, which is used
by the Source core to generate TDClk. Value must
be greater than or equal to 2.00 ns (≤ 500 MHz).

RDCLK_PERIOD Time 2.86 ns

<time>

Sets the period of the RDClk signal and the half-
period of the RDClk2x signal. Value must be
greater than or equal to 2.00 ns (≤ 500 MHz).

USERCLK_PERIOD Time 5.71 ns

<time>

Sets the period of the UserClk, used for the
loopback interface to the cores and programming
of the calendars. Value must be greater than or
equal to 4.00 ns (≤ 250 MHz).

TFF Time 500 ps

<time>

Clock-to-out time used by logic in the
demonstration test bench

Table 4-10: Testcase Package User-Defined Constants (Continued)

Name
Constant

Type
Default Value

(Range)
Description

http://www.xilinx.com

42 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

Table 4-11 contains a list of common useful test case signals and descriptions.

There are five request signals that can be asserted in the testcase module. The first four
signals interface to the stimulus module (see Figure 4-2, page 34). The fifth is encapsulated
with the generated data sent to the stimulus module. Table 4-12 details request signals.

In addition to the request signals described above, the test case module has control over
the Sink and Source cores with the SnkEn, SrcEn, SnkFifoReset_n, and
SrcFifoReset_n signals. Descriptions of these signals can be found in the SPI-4.2 Core
User Guide.

The Source core status is also generated in the test case module using functions contained
in the procedures module. Using the function send_status, you can specify a channel

Table 4-11: Useful Testcase Signals

Name Description

FullVec An array of bits indicating the last status received on RStat for
each channel. For each channel, the corresponding bit is set (1)
if the status received was ‘10’ - satisfied, and cleared (0) if the
status was ‘01’ - hungry or ‘00’ - starving.

NumLinks The number of channels for which the core was configured.

Reset_n Reset signal to the Sink and Source core (active low).

SnkEn Enable signal to the Sink core.

SnkFifoReset_n FIFO Reset signal to the Sink core (active low).

SnkInFrame Asserted when the Sink core is in frame (as interpreted by the
status monitor).

SnkOof Out-of-Frame signal from the Sink core.

SrcEn Enable signal to the Source core.

SrcFifoReset_n FIFO Reset signal to the Source core (active low).

SrcInFrame Asserted when the Source core is in frame (as interpreted by
the data monitor).

SrcOof Out-of-Frame signal from the Source core.

Table 4-12: Testcase Module Request Signals

Name Function

TCIdleRequest Drives the IdleRequest input to the Source core, which results
in idles begin transmitted on TDat.

TCTrainingRequest Drives the TrainingRequest input to the Source core, which
causes training to be sent on TDat.

TCSnkDip2ErrRequest Drives the SnkDip2ErrRequest input to the Sink core, which
results in DIP2 errors on RStat.

TCDIP2Request When asserted (active high), causes DIP2 errors to be
transmitted on TStat.

TCDIP4Request When asserted (active high), causes DIP4 errors to be
transmitted on RDat.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 43
UG154 March 24, 2008

Demonstration Test Bench
R

and the status for that channel. This sends the status and the channel to the stimulus
module for transmission to the core. The stimulus module ensures that the status is sent in
the correct location of the calendar sequence.

Calendar Sequence Files (Sink and Source)
The snk_calendar.dat and src_calendar.dat files are used to define the order that
status is sent on the SPI-4.2 Interface. The number of lines in a file is equal to the length of
the calendar sequence (SnkCalendar_Len + 1 and SrcCalendar_Len +1). Each line of
the file represents an 8-bit calendar entry in hexadecimal format. For example, a calendar
with a length of five and a sequence of <channel 0, channel 1, channel 0, channel 2, channel
3> can be generated by the following format:

00
01
00
02
03

File names are defined in the test case package, and can be changed if desired.

http://www.xilinx.com

44 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Chapter 4: Detailed Example Design
R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 45
UG154 March 24, 2008

R

Appendix A

VHDL Details

Procedures Module
The procedures module is a package of functions instantiated in the testcase module to
simplify the sending of data and status to the Stimulus module. By using these functions,
the user can create any desired sequence of data or status. All functions are called from the
Testcase module using the following format:

Format: <function name>(<IOBus>, <inputs>)
Example: send_packet(ProBusR, 0, 40): A 40-byte long packet is sent on
channel 0.

The procedures module handles all clocking for the Testcase module. For an example of
how these procedures are used, see the default file (pl4_testcase.vhd) provided with
the core.

All functions in the VHDL procedures module use a passed-in record to inspect and
modify the state of the interface with the Stimulus module. There are two such record
types defined in the procedures module: ProceduresRDClkBusType (PBr) and
ProceduresTSClkBusType (PBt). For a usage example, see the provided testcase file
(pl4_testcase.vhd).

The tables in this section describe supported functions included in the procedures module.

reset (PBr) and reset (PBr) procedures are used to initialize the PBr and PBt records. They
must be called at the beginning of every testcase.

The send_packet procedure is used to transmit an entire packet of data. This procedure
always sends a SOP control word before the burst of data and an EOP control word
following the data burst. The EOPs (bits 14:13 of the control word following the burst) are
automatically calculated from the number of bytes sent.

The send_user_data procedure is used to transmit a burst of data. The presence of a SOP
control word (before the burst of data) and an EOP control word (following the data burst),
can be specified. The EOPs (bits 14:13 of the control word following the burst) are

Table A-1: send_packet (PBr, addr, bytes) Inputs

Name Range Description

ADDR 0 to 255 Channel on which the packet should be sent.

BYTES 1 to 255 Number of bytes to send on the selected channel.

http://www.xilinx.com

46 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix A: VHDL Details
R

automatically calculated from the number of bytes sent. ERR has a higher priority than
EOP; if EOP and ERR are both ‘1’, the EOPs for the burst is an EOP abort = ‘01’.

The send_idles procedure is used to send idle control words.

The send_training procedure is used to send training patterns.

The sop_spacing procedure is used to send errored data by sending two SOPs in less than
eight cycles. This function limits the number of cycles between the two SOPs to less than
seven. This ensures that a SOP spacing error occurs.

Table A-2: send_user_data (PBr, SOP, EOP, Err, Addr, bytes) Inputs

Name Range Description

SOP 0 or 1 Defines if the packet should begin with a SOP.

EOP 0 or 1 Defines if the packet should be terminated with
an EOP.

ERR 0 or 1 Defines if the packet should be terminated with
an EOP abort.

ADDR 0 to 255 Channel on which the packet should be sent.

BYTES 1 to 255 Number of bytes to send on the selected channel.

Table A-3: send_idles (PBr, cycles) Inputs

Name Range Description

CYCLES 0 to 511 Number of idle control words to send on RDat.

Table A-4: send_training (PBr, patterns) Inputs

Name Range Description

PATTERNS 0 to 255 Number of training patterns to send.

Table A-5: sop_spacing (PBr, Bytes1, Err1, Addr1, EOP2, Err2, Addr2, Bytes2,
num_cycles) Inputs

Name Range Description

BYTES1 0 to 10 The number of bytes to send in the first burst.
This is limited to 10 bytes to ensure SOP spacing
is violated.

ERR1 0 or 1 Defines if the first packet should be terminated
with an EOP abort. If set to 0 the EOPs will be
calculated from BYTES1.

ADDR1 0 to 255 Channel on which the first packet should be sent.

EOP2 0 or 1 Defines if the second packet should be
terminated with an EOP.

ERR2 0 or 1 Defines if the second packet should be
terminated with an EOP abort. If set to 0 the
EOPs will be calculated from Bytes1.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 47
UG154 March 24, 2008

Procedures Module
R

The send_status procedure is used to change the status for a particular channel.

The get_status procedure is called to check status of a specific channel. It will cause the
status value of that channel to be returned to the testcase.

ADDR2 0 to 255 Channel on which the second packet should be
sent.

BYTES2 1 to 255 The number of bytes to send in the second burst.

NUM_CYCLES 0 to [5 - roundup
(BYTES1/2)]

The number of idle cycles between the first and
second burst.

Table A-6: send_status (PBt, channel, value) Inputs

Name Range Description

CHANNEL 0 to 255 Defines the channel for which status is updated.

VALUE 00,01,10,11 Defines the new status value to assign to the
selected channel.

Table A-7: get_status (PBt, channel) Inputs

Name Range Description

CHANNEL 0 to 255 Defines the channel for which status is read.

Table A-5: sop_spacing (PBr, Bytes1, Err1, Addr1, EOP2, Err2, Addr2, Bytes2,
num_cycles) Inputs (Continued)

Name Range Description

http://www.xilinx.com

48 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix A: VHDL Details
R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 49
UG154 March 24, 2008

R

Appendix B

Verilog Details

Procedures Module
The procedures module is a package of functions instantiated in the Testcase module to
simplify sending data and status to the Stimulus module. Use these functions to create any
desired sequence of data or status. All functions are called from the Testcase module using
the following format:

Format: tasks.<function name>(<inputs>)
Example: tasks.send_packet(0,40): A 40-byte long packet is sent on
channel 0.

The procedures module handles all clocking for the Testcase module. For an example of
how these procedures are used, see the default file (pl4_testcase.v) provided with the
core.

The tables in this section describe the supported functions included in the procedures
module.

The reset procedure is used to reset the interface to the Stimulus Module. This procedure
should be called at the beginning of any testcase.

The send_packet procedure is used to transmit an entire packet of data. This procedure
will always send a SOP control word before the burst of data and an EOP control word
following the data burst. The EOPS (bits 14:13 of the control word following the burst) are
automatically calculated from the number of bytes sent.

Table B-1: send_packet (Addr, bytes) Inputs

Name Range Description

ADDR 0 to 255 Channel on which the packet should be sent.

BYTES 1 to 255 Number of bytes to send on the selected channel.

http://www.xilinx.com

50 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix B: Verilog Details
R

The send_user_data procedure is used to transmit a burst of data. The presence of a
SOP control word (before the burst of data) and an EOP control word (following the data
burst), can be specified. The EOPS (bits 14:13 of the control word following the burst) are
automatically calculated from the number of bytes sent. ERR has a higher priority than
EOP; if EOP and ERR are both ‘1’, the EOPs for the burst is an EOP abort = ‘01.’

The send_idles procedure is used to send idle control words.

The send_training procedure is used to send training patterns.

The sop_spacing procedure is used to send erred data by sending two SOPs in less than
eight cycles. This function limits the number of cycles between the two SOPs to less than
seven. This ensures that a SOP spacing error occurs.

Table B-2: send_user_data (SOP, EOP, Err, Addr, bytes) Inputs

Name Range Description

SOP 0 or 1 Defines if the packet should begin with an SOP.

EOP 0 or 1 Defines if the packet should be terminated with
an EOP.

ERR 0 or 1 Defines if the packet should be terminated with
an EOP abort.

ADDR 0 to 255 Channel on which the packet should be sent.

BYTES 1 to 255 Number of bytes to send on the selected channel.

Table B-3: send_idles (cycles) Inputs

Name Range Description

CYCLES 0 to 511 Number of idle control words to send on RDat.

Table B-4: send_training (patterns) Inputs

Name Range Description

PATTERNS 0 to 255 Number of training patterns to send.

Table B-5: sop_spacing (Bytes1, Err1, Addr1, EOP2, Err2, Addr2, Bytes2,
num_cycles) Inputs

Name Range Description

BYTES1 0 to 10 The number of bytes to send in the first burst. This
is limited to 10 bytes to ensure SOP spacing is
violated.

ERR1 0 or 1 Defines if the first packet should be terminated with
an EOP abort. If set to 0 the EOPs will be calculated
from BYTES1.

ADDR1 0 to 255 Channel on which the first packet should be sent.

EOP2 0 or 1 Defines if the second packet should be terminated
with an EOP.

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 51
UG154 March 24, 2008

Random Testcase Sample Code
R

The send_status procedure is used to change the status for a particular channel.

The get_status procedure is called to check status of a specific channel. It will cause the
status value of that channel to be returned to the Testcase.

Random Testcase Sample Code
The following code is an example that can be inserted into the pl4_testcase.v file to
send randomized data to the Sink core. It should replace the default code used to send
data. In addition to sending randomized data, it also randomly asserts each request signal.

wait (Reset_n == 1);
@ (posedge RDClk2x);

//**

// Sends out randomized data, idles, or training.
// It also randomly toggles TCIdleRequest, TCTrainingRequest,
// TCDIP4Request, TCDIP2Request, and TCSnkDip2ErrRequest
//**

forever
begin
RandTask = {$random(`RANDOM_SEED + $time)} % 4;

ERR2 0 or 1 Defines if the second packet should be terminated
with an EOP abort. If set to 0 the EOPs will be
calculated from Bytes1.

ADDR2 0 to 255 Channel on which the second packet should be
sent.

BYTES2 1 to 255 The number of bytes to send in the second burst.

NUM_CYCLES 0 to
[5 - roundup
(BYTES1/2)]

The number of idle cycles between the first and
second burst.

Table B-6: send_status (channel, value) Inputs

Name Range Description

CHANNEL 0 to 255 Defines the channel whose status will be
updated.

VALUE 00,01,10,11 Defines the new status value to assign to the
selected channel.

Table B-7: get_status (channel) Inputs

Input Range Description

CHANNEL 0 to 255 Defines the channel whose status will be read.

Table B-5: sop_spacing (Bytes1, Err1, Addr1, EOP2, Err2, Addr2, Bytes2,
num_cycles) Inputs (Continued)

Name Range Description

http://www.xilinx.com

52 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix B: Verilog Details
R

RandIdleRequest = {$random(`RANDOM_SEED + $random(`RANDOM_SEED +
$time))} % 100;
RandTrainingRequest = {$random(`RANDOM_SEED + $time)} % 100;
RandDIP4Request = {$random(`RANDOM_SEED + $time +

$random(`RANDOM_SEED))} % 100;
RandDIP2Request = {$random($random(`RANDOM_SEED) + $time)} % 100;
RandSnkDip2ErrRequest = {$random(`RANDOM_SEED + $random($time))} %

100;

//Randomly set TCIdleRequest to 1
if ((RandIdleRequest == 0) || (TCIdleRequest == 1))
begin
if (TCIdleRequest == 1)
begin
if (IdleRequestCnt > 0)
begin
IdleRequestCnt <= IdleRequestCnt - 1'b1;
TCIdleRequest <= 1'b1;

end
else
begin
IdleRequestCnt <= 'b0;
TCIdleRequest <= 1'b0;

end
end
else
begin
TCIdleRequest <= 1'b1;
IdleRequestCnt <= {$random(`RANDOM_SEED + $time)} % 9;

end
end

//Randomly set TCTrainingRequest to 1
if ((RandTrainingRequest == 0) || (TCTrainingRequest == 1))
begin
if (TCTrainingRequest == 1)
begin
if (TrainingRequestCnt > 0)
begin
TrainingRequestCnt <= TrainingRequestCnt - 1'b1;
TCTrainingRequest <= 1'b1;

end
else
begin
TrainingRequestCnt <= 'b0;
TCTrainingRequest <= 1'b0;

end
end
else
begin
TCTrainingRequest <= 1'b1;
TrainingRequestCnt <= {$random(`RANDOM_SEED + $time)} % 9;

end
end

//Randomly set TCDIP4Request to 1
if ((RandDIP4Request == 0) || (TCDIP4Request == 1))
begin
if (TCDIP4Request == 1)

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 53
UG154 March 24, 2008

Random Testcase Sample Code
R

begin
if (DIP4RequestCnt > 0)
begin
DIP4RequestCnt <= DIP4RequestCnt - 1'b1;
TCDIP4Request <= 1'b1;

end
else
begin
DIP4RequestCnt <= 'b0;
TCDIP4Request <= 1'b0;

end
end
else
begin
TCDIP4Request <= 1'b1;
DIP4RequestCnt <= {$random(`RANDOM_SEED + $time)} % 9;

end
end

//Randomly set TCDIP2Request to 1
if ((RandDIP2Request == 0) || (TCDIP2Request == 1))
begin
if (TCDIP2Request == 1)
begin
if (DIP2RequestCnt > 0)
begin
DIP2RequestCnt <= DIP2RequestCnt - 1'b1;
TCDIP2Request <= 1'b1;

end
else
begin
DIP2RequestCnt <= 'b0;
TCDIP2Request <= 1'b0;

end
end
else
begin
TCDIP2Request <= 1'b1;
DIP2RequestCnt <= {$random(`RANDOM_SEED + $time)} % 9;

end
end

//Randomly set TCSnkDip2ErrRequest to 1
if ((RandSnkDip2ErrRequest == 0) || (TCSnkDip2ErrRequest == 1))
begin
if (TCSnkDip2ErrRequest == 1)
begin
if (SnkDip2ErrRequestCnt > 0)
begin
SnkDip2ErrRequestCnt <= SnkDip2ErrRequestCnt - 1'b1;
TCSnkDip2ErrRequest <= 1'b1;

end
else
begin
SnkDip2ErrRequestCnt <= 'b0;
TCSnkDip2ErrRequest <= 1'b0;

end
end
else

http://www.xilinx.com

54 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix B: Verilog Details
R

begin
TCSnkDip2ErrRequest <= 1'b1;
SnkDip2ErrRequestCnt <= {$random(`RANDOM_SEED + $time)} % 9;

end
end

//Sends a random sized packet to a random channel
if (RandTask == 0)
begin
tasks.send_packet({$random(`RANDOM_SEED + $time)} % (`NUM_CHANNELS

- 1), ($random(`RANDOM_SEED + $time) % 255) + 1'b1);
end
//Sends a random sized packet to a random channel. Also SOP, EOP, and
//Err are randomized
else if (RandTask == 1)
begin
tasks.send_user_data({$random(`RANDOM_SEED + $time)} % 2,

{$random(`RANDOM_SEED + $time + $random(`RANDOM_SEED))} % 2,
{$random(`RANDOM_SEED + $time + $random(`RANDOM_SEED + $time))} % 2,
{$random(`RANDOM_SEED + $time)} % (`NUM_CHANNELS - 1),
($random(`RANDOM_SEED + $time) % 255) + 1'b1);
end
//Sends a random number of idles to the Sink Core
else if (RandTask == 2)
begin
tasks.send_idles(({$random(`RANDOM_SEED + $time)} % 10) + 1);

end
//Sends a random number of training patterns to the sink core
else if (RandTask == 3)
begin
tasks.send_training(({$random(`RANDOM_SEED + $time)} % 10) + 1);

end
else
begin
@ (posedge RDClk2x);
$display("Out of Range: %0d", $time);

end
end

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 55
UG154 March 24, 2008

R

Appendix C

Data and Status Monitor Warnings

The Data and Status monitors continuously check data sent to and received from the
demonstration test bench. There are several common warnings that occur when the
Testcase module is modified. The warnings are listed and described below.

TDat Warning: Source is segmenting packets <simulation time>

This warning means that the Source core is sending payload resumes in the middle of
sending a burst. This is acceptable operation if SrcBurstMode = 0. If SrcBurstMode = 1,
this should only occur if the maximum burst length is reached (as defined by
SrcBurstLen).

RStat Info: Sink is out of frame. Expect TDat mismatches <simulation time>

This indicates that the Sink core went out of frame during operation. Unless training or
idles are being sent on RDat when this occurs, there will be data errors on TDat. This is
because what is being sent in on RDat is no longer being transferred to TDat.

RStat Info: Expected DIP2 mismatch received: SnkDip2ErrReqFlag = 1 <simulation
time>

This indicates that a DIP2 error was detected on RStat. It is only a note and not an error
because SnkDip2ErrReq was asserted, which means that a DIP2 error is expected.

RDat Warning: Protocol Violation #4. Idle follows data on a non-credit boundary
<simulation time>

This indicates that the SPI-4.2 protocol was violated when data was sent from the
demonstration test bench. The most likely cause is that send_user_data was used to
send data without an EOPS, which ended on a non-credit boundary, then an idle was sent
using send_idles.

RDat Warning: Protocol Violation

Any RDat protocol violation occurred because of incorrectly formatted data transmitted
from the Testcase Module (that is, they are user-created).

http://www.xilinx.com

56 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix C: Data and Status Monitor Warnings
R

http://www.xilinx.com

SPI-4.2 v8.5 Getting Started Guide www.xilinx.com 57
UG154 March 24, 2008

R

Appendix D

Timing Simulation Warning and Error
Messages

There are several common simulation warnings and error messages when timing
simulation is run on the example design. These warnings and messages are described in
this appendix.

"# TDat Error: Data Mismatch # 4. Expected 000f, Received 000x. 339280 ps"

The data mismatch results from the data going to unknown "x" state. To prevent "x" from
propagating in your simulation, use the "+no_notifier" option to vsim command when
using ModelSim Simulator (MTI). If you are using other simulators, consult the
manufacturer documentation for possible ways to turn off "x" propagation.

SETUP, HOLD, RECOVERY violation on /X_FF

These violations might come from either the Sink core or Source Core, and they originated
from register elements that are transiting between two clock domains. These timing
violations can be safely ignored.

When running simulation on a SPI-4.2 Sink Core with Global Clocking and DPA Clock
Adjustment option, the signal Locked_RDClk (from RDClk DCM) might get deasserted
after PhaseAlignRequest is asserted. When the PhaseAlignRequest has been
asserted, the IDELAY goes through the reset process and the clock stops toggling
momentarily. This might cause the lock signal from the DCM to get deasserted in
simulation (this does not occur in hardware testing). Locked_RDClk should be ignored
after the PhaseAlignRequest has been asserted in simulation.

"Memory Collision Error on X_RAMB16"

The "Memory Collision" error occurs occasionally because the calendar block is trying to
read out values at the same time that you are writing them in; however, this is not a
problem because you are only supposed to write the calendar when the core is disabled.

http://www.xilinx.com

58 www.xilinx.com SPI-4.2 v8.5 Getting Started Guide
UG154 March 24, 2008

Appendix D: Timing Simulation Warning and Error Messages
R

http://www.xilinx.com

	LogiCORE™ IP SPI-4.2 Core v8.5
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Contents
	Conventions
	Typographical
	Online Document

	Introduction
	System Requirements
	About the Core
	Recommended Design Experience
	Additional Core Resources
	Technical Support
	Feedback
	Core
	Document

	Licensing the Core
	Before you Begin
	License Options
	Simulation-Only Evaluation
	Full System Hardware Evaluation
	Full

	Obtaining Your License
	Installing Your License File

	Quick Start Example Design
	Overview
	Generating the Core
	Implementing the Example Design
	Running the Simulation
	Setting up for Simulation
	Functional Simulation
	Timing Simulation

	Detailed Example Design
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example design
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional
	simulation/timing

	Implementation and Simulation Scripts
	Simulation Script Details

	Example Design Configuration
	Loopback Module
	Basic Loopback Operation

	Demonstration Test Bench
	Clock Generator
	Startup Module
	Stimulus Module
	Procedures Module
	Data Monitor
	Status Monitor
	Customizing the Demonstration Test Bench
	Test Case Package
	Testcase Module
	Calendar Sequence Files (Sink and Source)

	VHDL Details
	Procedures Module

	Verilog Details
	Procedures Module
	Random Testcase Sample Code

	Data and Status Monitor Warnings
	Timing Simulation Warning and Error Messages

